Stochastic Processes
Spring 2024 April 8, 2024
Homework #4: Exponential Distribution and Poisson Process
Due: April 25, noon
#1 (Chapter 5, Exercise 3) Let X be an exponential random variable. Without any
computations, tell which one of the following is correct. Explain your answer.
(a) E[X2|X > 1] = E[(X + 1)2]
(b) E[X2|X > 1] = E[X2]+1
(c) E[X2|X > 1] = (1 + E[X])2
#2 (Chapter 5, Exercise 4) Consider a post oce with two clerks. Three people, A,
B, and C, enter simultaneously. A and B go directly to the clerks, and C waits until either
A or B leaves before he begins service. What is the probability that A is still in the post
oce after the other two have left when
(a) the service time for each clerk is exactly (nonrandom) ten minutes?
(c) the service times are exponential with mean 1/µ?
#3 (Chapter 5, Exercise 50) The number of hours between successive train arrivals
at the station is uniformly distributed on (0, 1). Passengers arrive according to a Poisson
process with rate 7 per hour. Suppose a train has just left the station. Let X denote the
number of people who get on the next train. Find
(a) E[X],
(b) V ar(X).
#4 (Chapter 5, Exercise 59) Cars pass an intersection according to a Poisson process
with rate . There are 4 types of cars, and each passing car is, independently, type i with
probability pi,
P4
i=1 pi = 1.
(a) Find the probability that at least one of each of car types 1, 2, 3 but none of type 4 have
passed by time t.
(b) Given that exactly 6 cars of type 1 or 2 passed by time t , find the probability that 4 of
them were type 1.
1
#5 Numerical Experiment (Simulation of Poisson Process) In the lecture, we
have introduced two ways to simulate a Poisson processes. In this exercise, you need to
implement the two approaches via Python and validate that your code is correct.
In the attachment, you will find codes to generate exponential, Poisson and uniform
distributions. You can use those codes to implement your simulation. Besides, it also
contains codes to plot exponential and Poisson distribution functions. You can use those
codes to validate your simulation results.
1. Write two functions Poisson1 and Poisson2 to simulate the sequence of arrival times
of events on [0, 1] for a Poisson process with rate , where is the input to your
functions. In Poisson1, the simulation is based on generating i.i.d. inter-arrival times.
In Poisson2, you first generate the total number of arrivals and then the conditional
distribution of arrival times.
2. Set = 10. Run Poisson1 for 10000 rounds, record the total number of arrivals in each
round. Plot the empirical distribution of the simulated number of arrivals, and validate
your codes by comparing the empirical distribution with the theoretic distribution.
3. Set = 10. Run Poisson2 for 10000 rounds, record the first arrival time. (What if
there is no arrival on [0, 1]?) Plot the empirical distribution of the first arrival time,
and validate your codes by comparing the empirical distribution with the theoretic
distribution.
***********************************END*********************************
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- Excel服务器2025实现了不用安装Excel也能实现Excel共享
- 无界智造 场域共生丨荣事达智能房屋闪耀亮相2025世界制造业大会
- 连连数字CEO辛洁受邀出席INVESTOPIA全球系列对话·中国论坛 与业内共探中阿投资合作机遇
- 共话AI赋能数字化转型 重构企业智能管理新生态
- 三星官宣5月13日举行新品发布会,超轻薄Galaxy S25 Edge发布
- HGC环电强化国际业务领导架构 谭君骥及Ravindran Mahalingam分别担任专精职务
- 海伯森六维力传感器:助力人形机器人产业发展的创新力量
- 达闼董事长黄晓庆:以技术破局致胜从未止步
- 从辅助到核心,企业如何基于AI Agent升级品牌数字营销
- 国产2.5亿超高分辨率图像传感器发布,主要面向机器视觉领域
- 西部数据推出多款超高速、大容量存储解决方案
- 中关村e谷承办“科创耀未来 奋进谱新篇”企业家创新论坛圆满落幕
- 航科卫星“汕头数字一号”卫星发射成功!
- Gartner 最新魔力象限出炉!ManageEngine卓豪成功入围
- 科技重塑物流,英特尔&集和诚加速智慧物流发展!