Coursework 2: Godunov-Type Scheme for Free Surface Flow
1 Important Notes
This final coursework is worth 40% of the total module mark
The deadline for submission is on Friday 12 April 2024 at 14:00
2 Tasks
Develop a Godunov-type model for solving the following 1D shallow water equations:
Test different aspects of your numerical model by applying it to simulate all test cases
listed at the end of this document.
You should produce figures, tables, etc. to visualize and interpret your results.
Attach your code setup for test case 2: Tidal Wave over a Varying Bed
3 Submission/Report
You should write a short academic essay no more than 7 pages to clearly introduce your
model and present the results. You may use the following template:
A Godunov-Type Model for Free Surface Flow
Shannon Leaky
School of Civil Engineering & Geosciences
Newcastle University
Introduction
Herein, you should give a background for computational hydraulics, introduce different
numerical methods (finite difference, finite element, finite volume, etc.) and explain why you choose
a finite volume Godunov-type scheme (e.g. Toro 2001) to construct your model. A brief literature
review may be necessary.
Godunov-Type Shallow Flow Model
In this section, you should introduce the governing equations, i.e. the 1D shallow water
equations, and your numerical scheme.
Results and Discussion
You should present your results for all test cases using figures, tables, etc. Detailed discussion
should be provided to interpret the results. The analytical solutions which are provided should be
used to validate your model.
Conclusions
Draw brief conclusions here.
References
Toro EF (2001) Shock-capturing methods for free-surface shallow flows, John Wiley & Sons, Chichester.
Appendix
Attach your code set up for test case 2. The appendix will not be counted into the page limit
4 Test Cases
Test 1: Still water test
The bed elevation of the frictionless 1D channel is described by
where L = 14,000 m is the length of the channel.
Uniform computational grid: 50 cells;
Initial conditions:
Boundary conditions: transmissive / reflective;
Output results (water surface and velocity profiles) at t = 5000 s.
Test 2: Tidal Wave over a Varying Bed
In the same channel as Test 1, the analytical solutions of a tidal flow are given by
q = 0 throughout the channel
Boundary conditions: transmissive/open at both ends
Output results (water surface and velocity profiles) at t = 5 s.
Test 4: Tidal Wave over Steps
A tidal wave flow occurs in a 1500m long frictionless channel with two vertical steps with the bed
profile defined by
An asymptotic analytical solution of the flow is provided by
Uniform computational grid: 200 cells;
Initial conditions:
Boundary conditions: upstream
th ),0(
; and downstream reflective;
Output results at t = 10,800s and t = 32,400s.
请加QQ:99515681 邮箱:99515681@qq.com WX:codinghelp
- HGC环电强化国际业务领导架构 谭君骥及Ravindran Mahalingam分别担任专精职务
- 海伯森六维力传感器:助力人形机器人产业发展的创新力量
- 达闼董事长黄晓庆:以技术破局致胜从未止步
- 从辅助到核心,企业如何基于AI Agent升级品牌数字营销
- 国产2.5亿超高分辨率图像传感器发布,主要面向机器视觉领域
- 西部数据推出多款超高速、大容量存储解决方案
- 中关村e谷承办“科创耀未来 奋进谱新篇”企业家创新论坛圆满落幕
- 航科卫星“汕头数字一号”卫星发射成功!
- Gartner 最新魔力象限出炉!ManageEngine卓豪成功入围
- 科技重塑物流,英特尔&集和诚加速智慧物流发展!
- 数智赋能 向“新而行” 坦克与装甲车辆学术与发展论坛召开
- 赛诺威盛:大孔径专科化CT领航者
- 网易硬刚腾讯 两大游戏玩家之间的口水仗不断
- 全球“最独特”的一台华为 nova 6 5G 版手机是什么样子的?
- 拼多多抖音淘宝京东,谁是真低价?